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S t a t i s t i c a l  data a r e  presented on the reproducib i l i ty  and 

l i n e a r i t y  of turbine-type sensors,  i n  2-em t o  5-em s izes ,  with 

various types of bearings.  Design p r inc ip l e s ,  i n s t a l l a t i o n  

prac t ices ,  and inspection procedures a r e  suggested t h a t  a r e  

conducive t o  r e l i a b i l i t y .  The eff icacy of room-temperature 

ca l ib ra t ion  with water or high-pressure nitrogen gas i s  a l s o  

considered. 

t o  iden t i fy  meters of good qual i ty  ( ca l ib ra t ion  reproducib i l i ty  

with less than 0.3% probable e r r o r )  and to es t ab l i sh  the mean 

ca l ib ra t ion  curve with minimum e r r o r .  

f l u i d  ve loc i t i e s  up t o  30 m/sec can y i e ld  a ca l ib ra t ion  f a c t o r  

t h a t  i s  constant t o  0.5% over a 1O:l flow range. 

Actual ca l ib ra t ion  i n  l i q u i d  hydrogen i s  required 

Designs operating a t  

INTRODUCTION 

The turbine-type flowmeter has been popular f o r  measuring the  flow 

of l i q u i d  hydrogen i n  rocket propulsion research and development because 

of i t s  compactness, s impl ic i ty  of i n s t a l l a t i o n ,  and tendency t o  in t eg ra t e  

severa l  forms of t ransverse ve loc i ty  d i s t r ibu t ions  i n  t h e  approach piping.  
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The most common form of  t h i s  meter uses a multi-bladed axial-flow r o t o r  

whose r o t a t i o n a l  speed i s  measured by means of  an electromagnetic pickup 

mounted on t h e  outer  surface of  t he  casing, t o  count pulses generated by 

blade passage. 

primary element, which w i l l  be termed the  meter f o r  brevi ty ,  and w i l l  not 

be concerned with the e lec t ronic  frequency-measuring instrumentation. 

I n  the  ideal ized,  energy-conservative (nondiss ipat ive)  case, t he  

This paper w i l l  be  concerned so le ly  with t h i s  type of 

ro t a t iona l  speed w i l l  be  d i r e c t l y  proportional t o  volumetric flow rate  

i n  the  upstream piping, the  f a c t o r  of propor t iona l i ty  depending pr inc ipa l ly  

on the  blade angle, t he  annular area of t he  blade passageway, t he  r a d i a l  

d i s t r i b u t i o n  of veloci ty ,  and various geometric parameters such as blade 

s o l i d i t y  ( chord-to-spacing r a t i o )  , blade-t ip  and r o t o r  clearances, 

approach-hub shape, and w a l l  smoothness. The meter may then be assigned 

a ca l ib ra t ion  f a c t o r  C y  the  pulses per u n i t  volume, which, i n  the  ca l ibra-  

t i o n  a c t ,  i s  ac tua l ly  the  measured number of pulses  per  un i t  time, N, 

divided by the  independently-measured volumetric flow r a t e  f T .  Idea l ly ,  

t he  ca l ib ra t ion  f a c t o r  would be constant a t  a l l  flow r a t e s .  

I n  the  p r a c t i c a l  case, where d i s s ipa t ion  i s  present ,  the  ca l ib ra t ion  

f a c t o r  drops o f f  a t  lower flow ra t e s ,  because of the  increasing dominance 

o f  mechanical f r i c t i o n  and o ther  drag forces .  

f a c t o r  C - vs pulse  frequency N may have any of  t he  shapes shown i n  Fig. 1, 

depending on the  r a t i o s  between dr iving and re ta rd ing  torques. 

torque ava i lab le  t o  maintain yotor speed i s  proport ional  t o  dynamic pressure 

pvz/2, where p i s  f l u i d  densi ty  and va i s  some mean l i n e a r  ve loc i ty  

of t h e  f l u i d  i n  the  blade annulus. 

increase with f l u i d  v i scos i ty  and with some power (between 1 and 2 )  of 

The curve o f  ca l ib ra t ion  

The dr iving 

Retarding f l u i d - f r i c t i o n  torques w i l l  
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f l u i d  veloci ty .  

coef f ic ien t  o f  bearing f r i c t i o n .  

Retarding bearing torques w i l l  be proportional t o  the  

Mechanical bearing f r i c t i o n  i s  par. t icularly 

dominant i n  metering l i qu id  hydrogen because of  the  l i qu id ’ s  low density 

and low kinematic v i scos i ty .  

The subject  o f  the  balance between dr iving and retarding torques has 

been t r ea t ed  by severa l  investigators’’ 

d i r ec t ion  toward l i q u i d  hydrogen. 

end of  t h e  curves of Fig. 1 i s  associated with the  low Reynolds No. regime, 

whereas the  right-hand end i s  associated with t h e  high Reynolds No. regime. 

The right-hand asymptote o f  t he  curves i s  a horizontal  l i n e  because then 

both dynamic pressure and f l u i d  f r i c t i o n  vary subs tan t ia l ly  as the  square 

of veloci ty .  The e f f e c t  o f  bearing f r i c t i o n  i s  fu r the r  t o  reduce t h e  

value of  C a t  low f l u i d  ve loc i t ies .  I n  p a s t  experience , t he  drop i n  C 

a t  some given relatively-low ve loc i ty  has always been grea te r  i n  l i q u i d  

hydrogen than i n  a denser f l u i d  such a s  water. 

although not with spec i f i c  

Lee and Karlby’ show t h a t  t he  left-hand 
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A p a r t i c u l a r  meter i s  characterized pr inc ipa l ly  by i t s  asymptotic 

ca l ib ra t ion  f ac to r  Cm. Other meter cha rac t e r i s t i c s  t h a t  i n t e r e s t  a 

user a r e  r e l a t ed  t o  (1) the s t a b i l i t y  ( reproducib i l i ty )  of  ca l ib ra t ion  

f ac to r  

curve, i. e . ,  the  extent  t o  which 

flow r a t e  , 

C ( t )  with time and ( 2 )  t he  f l a tnes s  ( l i n e a r i t y )  of t he  ca l ib ra t ion  

C($) M Cm over an appreciable span of 



4 

Published analyses 1-3' 5-9 of t he  turbine-type meter have contributed 

t o  an understanding of  i t s  operation and have provided the  means of  

estimating the  e f f ec t s  on the  ca l ibra t ion  f ac to r  of  changes i n  operating 

conditions. 

of many fac tors  of meter performance, and have demonstrated t h a t  

could 'be predicted wel l  i f  boundary conditions were adequately defined. 

Actual reported ca l ibra t ion  experience with l i qu id  hydrogen i s  

Thompson and Grey BY9 have provided a comprehensive summary 

Cm 

l imi ted .  Deppe'' has reported on a 20-cm meter and a 45-ern meter, including 

some data taken a t  t h e  Los Alamos Sc ien t i f i c  Laboratory Cryogenic Fac i l i t y  

a t  Jackass Flats, Nevada. 

diameter. ) Mortenson and Wheelock , i n  a repor t  on mass flowmeters, 

include a volumetric ca l ib ra t ion  of a 7.5-em turbine-type meter. However, 

the  only reports  t h a t  contain su f f i c i en t  s t a t i s t i c a l  information t o  bear 

on points  (1) and (2) above a r e  those by Bucknell 

and by Minkin , e t  a1 on 2-cm t o  5-em meters. The present paper extends 

the  l a t t e r  work on small meters and abs t rac ts  some of it. The extension 

of work r e l a t e s  pr inc ipa l ly  t o  a study of the  r o l e  of  the  bearing and t o  

an exploration of t he  advantages of  operating, i n  hydrogen, a t  higher 

ro t a t iona l  speeds and l i qu id  ve loc i t ies  than would ord inar i ly  be considered 

safe  maxima f o r  water service.  

(S ize  designations refer t o  the  nominal pipe 

11 

, on 7.5-cm meters, 12-14 

4 

To f a c i l i t a t e  comparison of meters of  d i f f e ren t  s izes ,  t h e  independent 

var iable  w i l l  usually be chosen a s  the  average l i n e a r  veloci ty  v i n  t h e  

unobstructed upstream piping, instead of t h e  more conventional quantity 

N, which i s  approximately proportional t o  v f o r  a given meter. 
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TESTS 

Fac i l i t y  

A l l  t e s t s  were conducted i n  the NASA-Lewis ca l ibra t ion  f a c i l i t y  1 5 3  

f o r  liquid-hydrogen meters. 

t h e  e a r l i e r  repor t s .  The primary reference standard provides a continuous 

record of mass displacement of f l u i d  i n  the  supply tank by recording the  

change i n  buoyant force on a long, cy l indr ica l  f l o a t  suspended i n  the  

tank. A secondary working standard i s  a s e r i e s  of hot-wire probes located 

a t  f ixed l eve l s  i n  the  tank; these, connected t o  appropriate timing systems, 

provide a measure of incremental volume displacements of the  gas-liquid 

in te r face .  Flow i s  produced by continuous flow o f  pre-cooled helium gas, 

under pressure, i n t o  t h e  space above the  gas-liquid in te r face .  Flow 

r a t e s  up t o  10 l i t e r s / s e c  were used i n  the present s e r i e s  of t e s t s ;  the  

highest  flow r a t e  used i n  any t e s t  was always su f f i c i en t  t o  def ine the 

value of Cm. 

so t h a t  heat  losses  a r e  negl igible .  Densit ies i n  the  tank and i n  the  

t e s t  sec t ion  a r e  determined t o  a probable e r ro r  o f  O.OZ$ by means of 

platinum-r es i s  tance t h e r m ~ m e t e r s l ~ ;  independent check against  a buoyant- 

force method had confirmed t h e  accuracy of t h e  procedure 

Some minor improvements have been made s ince 

The t e s t  meters a r e  bathed i n  t h e i r  own ef f luent  l iqu id ,  

1 5 9 1 6  

Continuously monitored and recorded readings of suppressed-zero 

frequency meters connected t o  each of  t he  meters being t e s t ed  confirms 

t h a t  flow r a t e  i s  constant during t h e  duration of a run. 

on-the-fly e lec t ronic  counter t h a t  p r i n t s  out  the  accumulated pulses  

every 10 seconds, and of the primary mass-displacement device, provide 

subsequent independent confirmations t h a t  flow r a t e  had been constant.  

Records of an 
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Procedure 

A ca l ib ra t ion  point  i s  taken by pressurizing the  supply tank, 

es tab l i sh ing  constant flow r a t e  from the supply tank t o  the  receiving tank, 

and then making measurements of mass and volume displacement, pulse  rate, 

and pulse  accumulation for a period on the  order  of 100 seconds. 

flow i s  reversed, and t h e  contents of t h e  receiving tank returned t o  the  

supply tank i n  preparat ion for the  next po in t .  Thus, t he  meter i s  run 

backwards, a t  slow speed, between successive poin ts .  Experience shows 

t h a t  the order i n  which points  a r e  taken along the  ca l ib ra t ion  curve does 

not a f f e c t  the value of C obtained. A complete ca l ibra t ion ,  including 

inc identa l  operations such a s  cooldown, e n t a i l s  about two hours of running 

time for t he  meter. 

Then, 

Ace ura cy 

For purposes of es tab l i sh ing  reproducib i l i ty ,  the probable e r ro r  

( e  ) of a s ing le  observation, t h a t  i s  introduced by the ca l ib ra t ion  f a c i l i t y  

and operating technique, i s  estimated t o  be less than 0.06% i n  the  upper 

half  of t he  flow-rate range for any meter, increasing t o  about twice t h i s  

value a t  the  lowest flow r a t e  of t h e  range. 

introduced by the  curve- f i t t ing  a c t ,  the  contr ibut ion of the  ca l ib ra t ion  

system and technique t o  the  e of determining i s  estimated t o  be 

l e s s  than O.O3$. 

P 

Because of t he  smoothing 

P 

For purposes of es tab l i sh ing  absolute  accuracy, as required i n  

comparing ca l ibra t ions  performed i n  d i f f e r e n t  t e s t  f a c i l i t i e s ,  the  e of 

a s ing le  observation may be taken as O.25$ because invariant ,  but uncertain,  

e r ro r s  of the  f a c i l i t y  must be included. 

P 
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The meter i t se l f  adds addi t iona l  random e r ro r s .  The r e su l t an t  

d i s t r i b u t i o n  o f  e r ro r s  i s  usually of a truncated Gaussian form, and 

experience shows t h a t  a t  l e a s t  95% of  the  e r ro r s  w i l l  be  l e s s  than 2e . 
Test Meter Arrangement 

P 

Two t e s t  meters, i n  s e r i e s ,  separated by flow-straightening sect ions,  

a r e  t e s t e d  a t  a time. Comparison between t h e  two meters w i l l  serve t o  

revea l  those mistakes i n  the  ca l ib ra t ion  operation which would produce 

similar aberrat ions on both graphs of 

Z.5-cm meters i s  shown i n  Fig. 2 .  Flow-straightening precautions are more 

4 e laborate  than those i n  e a r l i e r  t e s t s  because t h e  e a r l i e r  tes ts  had 

indicated a s l i g h t  systematic d i f fe rence  i n  Cm between upstream and 

downstream pos i t ions  of a t  l e a s t  one model o f  meter. 

was a bundle o f  13 O.25mm-wallY 7.5mm diam. tubes, 75m long. 

C ( N ) .  The arrangement f o r  t h e  

Each s t ra ightener  

Test Meters 

Two models of 2.5-cm (nominal 1-inch) meters and one model of 4-em 

(nominal 1.5-inch) meter were t e s t e d  t o  study reproducib i l i ty  and t h e  

influence o f  the  bearings.  The 4-em meter was t h e  same model as reported 

4 on previously . Another s ing le  &-em meter resembling a previously-tested 

model w a s  included because it had an  exceptionally reproducible 

provided a check on t h e  r e l i a b i l i t y  of  t he  ca l ib ra t ion  procedure. 

4-em meters were standard water-service types; the  2.5-cm meters were 

spec i f i ca l ly  for liquid-hydrogen service.  Some cha rac t e r i s t i c s  o f  these 

meters a r e  l i s t e d  i n  Table I. 

Cm and 

The 
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Bearings 

It has been known f o r  some t h a t  b a l l  bearings with 

g l a s s - f i l l e d  polytetraf luoroethylene (PTFE) r e t a ine r s  were very des i rab le  

f o r  liquid-hydrogen service.  However, r e t a ine r s  f o r  such small bearings 

a s  used i n  the 2.5-cm meters had not been ava i lab le  w : t L 1  the  i n i t i a t i o n  

of t he  present  s e r i e s  of t e s t s .  Accordingly, p r i o r  work 4y l5 ’ l6 had a l l  

been performed with full-complement, unshielded bearings; performance had 

been qu i t e  s a t i s f ac to ry .  

The type Bd, E, and F meters procured for  the new t e s t s  were 

furnished with shielded b a l l  bearings having r e t a ine r s  of  a propr ie ta ry  

form of g l a s s - f i l l e d  PTFE. After t he  type F meters were t e s t ed  i n  the  

as-received condition, the bearings i n  some meters were replaced with 

full-complement, unshielded bearings f o r  comparative t e s t s .  

A t  about the  same time, other  filled-PTFE mater ia l  became avai lable ,  

from which journal  bearings could be fabr ica ted .  The subs t i t u t ion  of  

journal  bearings f o r  b a l l  bearings was convenient only i n  the case of the  

type A meters. Although four  d i f f e r e n t  proprietary mixes of  mater ia l  

were t r i e d ,  r e s u l t s  were not s ign i f i can t ly  d i f f e r e n t  among t h e  various 

mixes, perhaps because there  were only a few t r i a l s  of each; a l l  r e s u l t s  

on journa l  bearings a r e  therefore  lumped i n  a common category. 

bearing type w i l l  be iden t i f i ed  by a s u f f i x  following the  meter-type 

The 

designation, a s  follows: 

-F full-complement, unshielded r a d i a l  bal l -bear ing 

-R shielded r a d i a l  b a l l  bearing with g l a s s - f i l l e d  PTFE 
r e t a i n e r  
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-J filled-PTFE journal  bearing, 1 mm wall  thickness,  with 

one o f  t he  following f i l l e r s :  (1) 25% glass ,  ( 2 )  15% 

glass ,  (3).  10% organic polyamide, ( 4 )  60% bronze ( t h i s  

mater ia l  appeared t o  produce s l i g h t l y  poorer performance 

than the  others ,  but  not so s t rongly as t o  warrant 

separate  consideration} e 

All meta l l ic  bearing p a r t s  were of  HIS1 440C s t a in l e s s  s t e e l .  The 

f i t  of  shafts i n  t h e  bores was qu i t e  loose,  so t h a t  a x i a l  motion of  t h e  

r o t o r  was possible .  I n  type A meters, t h r u s t  was taken by the  round- 

td. md 0 - F  the  ~ O Y O T  sha f t ,  bearing on a s t e e l  p l a t e .  I n  'cypes By E, and 

F meters, t h r u s t  was taken by the  deep-groove b a l l  bearing. 

Number of Calibrations 

Table I1 l i s t s  the  number of useful  ca l ibra t ions  performed on t h e  

various designs of  meters. A f e w  runs, which are discussed l a t e r  under 

Re l i ab i l i t y ,  were r e j ec t ed  because no meaningful values o f  C could be 

derived from them. 

RESULTS AND DISCUSSION 

To provide a common bas i s  f o r  comparison of meters of d i f f e r e n t  

s i zes ,  t h e  abscissa  o f  t he  ca l ib ra t ion  curve w i l l  generally be taken as 

the  mean l i n e a r  ve loc i ty  v 

the  meter i s  designed. The ve loc i ty  v i s  subs t an t i a l ly  proport ional  t o  

N and t o  t. The reasons f o r  t h i s  choice of independent var iab le  a r e  

p r a c t i c a l i t y  and convenience--most piping systems a r e  designed with l i n e a r  

ve loc i ty  as a c r i t e r i o n .  To t h e  meter designer, a preferable  c r i t e r i o n  

i n  the  unobstructed upstream piping f o r  which 
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would be the  mean l i n e a r  veloci ty  i n  the  blade annulus; t h i s  i s  der ivable  

from t h e  data  i n  Table I ,  

Meter cha rac t e r i s t i c s  of i n t e r e s t  t o  a user  may be itemized e x p l i c i t l y  

as follows: 

(1) The constancy ( reproducib i l i ty )  of C and C t h a t  may be m 
expected f o r  a given meter, with continued use. Reproducibil i ty i s  

always poorer a t  t he  lower end of t h e  ve loc i ty  range. 

( 2 )  The shape of t he  ca l ib ra t ion  curve C(v) and i t s  poss ib le  

va r i a t ion  among a set  of meters of t he  same type. 

(3) The lowest veloci ty  v a t  which C(v) may be expected min, 1 

t o  remain reproducible t o  some s ta ted ,  acceptably small tolerance,  f o r  a 

s ing le  meter of a s e t  o f  the  same type. 

(4) The lowest veloci ty  vminY2 a t  which C(v) may be expected t o  

d i f f e r  from 

amount. Thereby, t h e  s ing le  number C may conveniently be used as t h e  

ca l ib ra t ion  f a c t o r  for the  meter over t he  e n t i r e  range 

Cm, f o r  a l l  v 2 vmin,2, by some s t a t ed ,  acceptably small 

m 

2 vmin, 2' 

( 5 )  The maximum veloc i ty  v t h a t  may be assigned as t h e  fu l l - s ca l e  fs  

range o f  a s e t  o f  meters of a given type.  

Cm. The chosen value of vfs ( o r  corresponding Nfs)  w i l l  represent  a 

Presumably, C(vfs) i s  equal t o  

compromise between bearing l i f e  and pressure loss on t h e  one hand, 

because these are adversely a f fec ted  by higher 

range on the  o ther  hand, because t h i s  i s  increased by higher 

t o  v 1 or (Vminy2 t o  vfs) .  It i s  between Useful range i s  e i t h e r  (vmin,l 

v and vfs i f  accuracy i s  t h e  p r inc ipa l  consideration, because 

v i s  determined by reproducib i l i ty .  Useful range i s  between vminY2 

vfS, and the  usefu l  

vfse  

fs 

min, 1 

min, 1 
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and vfs 

meter i s  sa id  t o  have a constant ca l ib ra t ion  f ac to r .  The r a t i o  

i f  convenience i s  the  pr inc ipa l  consideration, because then the  

) has been termed the  l i n e a r  range i n  p r i o r  vfs/vmin, 2 (=  NfsfNmin, 2 
4 publ icat ions . 

(6)  The a b i l i t y  t o  pred ic t  C and Cm for l i qu id  hydrogen, by 

performing ca l ibra t ions  w i t h  a d i f f e r e n t  f l u i d  tha t  i s  more convenient 

t o  use. 

I n  t h e  following presentat ion of results on s t a t i s t i c a l  dispersion, 

t h ree  l e v e l s  o f  complexity a r e  t o  be  distinguished: 

(1) The dispers ion of poin ts  about a s ing le  ca l ib ra t ion  curve. For 

t he  approximately 1-50 ca l ibra t ions  analyzed here, the  average e was 

0.07$, and 90% of t h e  ca l ibra t ions  had 
P 

e <_ 0 .l5$. 
P 

The dispers ion of ca l ib ra t ion  curves for a s ing le  meter, about (2) 

some mean ca l ib ra t ion  curve. 

( 3 )  The dispers ion of ca l ib ra t ion  curves for a s e t  o f  meters of 

one type. This comparison i s  meaningful only i f  the  ordinates  o f  each 

curve are expressed i n  the  nondimensional form C/Cm. 

Reproducibil i ty o f  Cm 

Repeated ca l ib ra t ions  o f  a given meter w i l l  y i e ld  a mean (most probable) 

from tha t  mean. Table I11 I A max value of  Cm and a maximum deviat ion 

l i s t s  the  value of  t h i s  quantity,  averaged over a l l  meters of  a given 

type, expressed as percent o f  Cm, E a r l i e r  work yielded a value on t h e  

order of  O,5% for t h ree  types of  meters ( t h e  quant i ty  

4 

Cnfs i n  t he  e a r l i e r  

work i s  equal t o  c,). 
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The number of  repeated ca l ibra t ions  o f  a s ing le  meter ranged from 2 

t o  13 f o r  A - J  types, and was close t o  the  average number l i s t e d  i n  Table 

I1 f o r  the other  types. 

it was considered t h a t  a new meter had been created whenever a meter was 

disassembled and re-assembled t o  change bearings, so t h a t  t h e  meter had 

a new Cm. With repeated ca l ibra t ion ,  en ta i l i ng  a t o t a l  meter usage 

generally ranging between 8 and 26 hours, there  w a s  no evidence of a 

progressive increase i n  the  random s c a t t e r  of 

mechanical de te r iora t ion .  Nor was there  such evidence a t  t he  lower end 

o f  t he  useful  ve loc i ty  range. 

For purposes of computing deviations from a mean, 

t h a t  would imply ‘m, 

The probable e r ro r  o f  knowledge of  Cm for a given meter i s  one 

ha l f  o f  t he  numbers given i n  Table 111. The lowest value o f  e derrvable 

from Table 111, that  f o r  t he  type Bd meter, i s  comparable t o  the  

estimated e of  the  ca l ib ra t ion  operation. This is  not an independent 

finding, but  merely an i l l u s t r a t i o n  of how the  e of t h e  ca l ib ra t ion  

technique was a r r ived  a t ;  namely, by assuming it t o  be near t he  lower 

bound of  t he  e 

P 

P 

P 

obtained i n  t h e  ca l ibra t ions  o f  meters o f  high qual i ty .  
P 
Reproducibility of  C f o r  a Single Meter 

Repeated ca l ibra t ions  o f  a s ingle  meter w i l l  not yl  . l d  t he  same 

ca l ib ra t ion  curve each time. 

which w i l l  increase a s  f l u i d  veloci ty  drops. 

ca l ib ra t ion  curves o f  a s ing le  meter may have t h e  appearance shown i n  

the  i n s e r t  i n  Fig. 3. The value of  the  m a x i m u m  dispersion of  C, a s  

defined i n  the  in se r t ,  has been determined f o r  each meter, bu t  t h i s  data  

The curves w i l l  s c a t t e r  by some amount, 

The envelope of  a l l  
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i s  too voluminous t o  present.  Instead, Fig. 3 presents the  average value 

of l * c l m a / C m  f o r  each of t he  types of  meters l i s t e d  i n  Ta'ble 11. 

The e of  C, i n  percent, 

Thus, t he  curves provide a means 

beyond which t h e  e of  C for 

P 

P 

i s  one ha l f  of  the  ordinates  of  Fig. 3. 

o f  es tabl ishing the  abscissa v min, 1 

a s ingle  meter w i l l  be l e s s  than any 

chosen amount. given the  most 

probable ca l ibra t ion  of  a given meter, how may other  ca l ibra t ions  o f  t he  

same meter d i f f e r ?  

Figure 3 helps t o  answer the question: 

Shape o f  C(N)  o r  C(v) 

Figure 4a shows the  shape of C/Cm (derived from mean curves such 

as  shown i n  the  inset .  of  Fig. 3) t h a t  may be expected, on the  average, 

f o r  each of t h e  meter types l i s t e d  i n  Table 11. 

curves with a horizontal  l i n e  a t  any selected ordinate  provide the  abscissas 

The in te rsec t ions  of t he  

V above which C w i l l  deviate  by l e s s  than the  selected amount from min, 2 

i t s  asymptotic value Cm. 

s t a t i s t i c a l  bas i s  f o r  estimating the r e l a t i v e  merits of  d i f fe ren t  meter 

The comparison of  curve shapes provides a 

designs i n  es tabl ishing a minimal value of  vmin,2. For a given geometric 

design o f  meter, there  was no s ign i f i can t  difference due t o  the  type of  

bearing used. 

The ordinates  o f  t h e  mean curves shown i n  Fig. 4a a r e  subject  t o  

random var ia t ion .  If a l l  ca l ibra t ions  of  a l l  meters of  a given type a r e  

p lo t t ed  on the  same sheet o f  paper, using the  nondimensional ordinate  

C/Cm, t h e  envelope of  these curves ( in se t ,  Fig. 4b) encloses a region i n  

which one has a high probabi l i ty  of  finding the calibration-curve shape 
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Figure 4b shows the  maximum dispersion of  another meter of the  same type. 

I A (  C/Cm) I m a  of a t  l e a s t  90% of a l l  ca l ibra t ion  curves obtained on each 

type of meter l i s t e d  i n  Table 11. A t  low ve loc i t ies ,  t h e  ordinates i n  

Fig. 4b a re  higher than those i n  Fig. 3 because (1: Fig. 4b presents  

extreme values of t he  dispersion, whereas Fig.  3 presents average values 

of the  maximum dispersion and ( 2 )  Fig. 4b includes the  e f f ec t  o f  manu- 

fac tur ing  var ia t ions  among the  several  meters of one tjrpe, whereas Fig. 3 

represents  a s ingle ,  average meter of t h a t  same type. The more useful 

and r e a l i s t i c  e of C/Cm i s  one ha l f  t he  ordinate  values given i n  

Fig. 4b. 
P 

Useful Range 

Two reasonable c r i t e r i a  f o r  determining v a re  bearing l i f e  and 

pressure drop. The s t a t i s t i c a l  determination o f  bearing l i f e ,  i n  controlled 

experiments, has not ye t  been made. The only information relevant  t o  t h i s  

subject  i s  ( a )  t h e  record of accumulated service (8 t o  26 h r . )  on t h e  t e s t  

meters as  reported under Reproducibility o f  

s imi la r ly  l imited nature, and ( e )  t h e  manufacturer's designated nominal 

fu l l - s ca l e  meter range, presumably influenced by the  bearing manufacturer's 

conventional ra t ings .  

fs 

4 Cm, ( b )  e a r l i e r  work of  

Pressure drop varied accurately as t h e  square of t he  veloci ty .  Only 

about ten  percent of t h i s  drop occurs across the  ro to r  i t s e l f ;  t he  

remainder i s  due t o  t h e  s t ra ighteners ,  bearing supports, and casing. 

Table I V  l i s t s  t h e  value o f  l i n e a r  veloci ty  and of corresponding ro t a t iona l  

speeds, a t  which s t a t ed  pressure drops occur across the  meter. The nominal 



fu l l - s ca l e  speed i s  a l so  l i s t e d .  If any one of  these ve loc i t i e s  i s  taken 

as v i t s  combination with the  chosen v (from Fig. 3) or 

v 

range o f  t he  meter. 

fs’ min, 1 

(from Fig. 4), whichever i s  preferred,  w i l l  define the  useful  min, 2 

2 For example, the  useful  range r a t i o  vfs/vmin,l, based on 3.5 N/cm 

(d5 p s i )  pressure drop a t  v and on e = 0.22$ (Fig. 3 )  i s  on t h e  

order of  5 f o r  type 

Table I V .  

and on ( C/Cm) 2 0.995 (Fig.  4) i s  on the  order of  1 2  f o r  type 

fS’ P 
A meters and 10  f o r  the  o ther  types l i s t e d  i n  

The l i n e a r  range vfs/vmin, 2, based on the  same pressure drop 

F meters 

and 5.5 f o r  t he  o ther  types. 

A s  a r u l e  o f  thumb, the  same pressure drop w i l l  occur a t  30 m/sec 

i n  l i q u i d  hydrogen a s  occurs a t  8 m/sec i n  water. 

Cal ibrat ion With Other Fluids 

Since Cm presumably i s  independent of  mechanical bearing f r i c t i o n ,  

and i s  reached i n  the turbulent-flow regime, i t s  value f o r  some o ther  

f l u i d  should be the  same as i t s  value f o r  l i q u i d  hydrogen (LH2) i f  one 

can maintain the  same veloci ty-prof i le  shape and magnitude a t  t h e  leading- 

edge o f  t he  blades, and the  same r a t i o  o f  dr iving torque t o  f lu id - f r i c t ion  

torque, and i f  correct ion i s  made f o r  thermal expansion. 

t h e  densi ty  and kinematic v i scos i ty  of f l u i d s  t h a t  have been used f o r  

simulation. Water has been common because of  i t s  convenience, although 

i t s  propert ies  do not match those o f  l i q u i d  hydrogen. 

gaseous nitrogen (GTIz) can provide a close approximation t o  both density 

and kinematic v i scos i ty ,  although l a rge  quant i t ies  of  gas a r e  required.  

Table V l i s t s  

High-pressure 
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The thermal-expansion correction and the  e f f ec t s  of  v i scos i ty  have both 

been t r ea t ed  i n  the  published l i t e r a t u r e  ’’ 6’ ‘I. An addi t ional  small 

correct ion f o r  blade-t ip  clearance and boundary-layer e f f ec t s  has a l s o  

been computed . Calibration with high-pressure 

e f f ec t ive  than a water ca l ibra t ion ,  i n  predict ing 

experiments 21 e The high-pres sure N2 CL Lbra t ion  y ie lds  an e 

0.4% i n  predict ing Cm and of  about 2.5% i n  predict ing C a t  20 percent 

of  nominal fu l l - s ca l e  range . 

N2 has proved more 

Cm, i n  6 out  of 9 

of  

21 

P 

21 

A f e w  meters used i n  the  current t e s t s  were ca l ibra ted  i n  water. 

Figure 5 summarizes the  present and p r i o r  r e s u l t s  4~21 of  simulations on 

small meters. The length of t h e  bar  represents  t h e  estimated probable 

e r ro r  o f  the  determination, which includes the  e r rors  of  t h e  ca l ibra t ion  

f a c i l i t i e s .  

Figure 6 compares the  shapes of  t he  ca l ib ra t ion  curves of  two types 

of  flowmeters i n  water. The shape of  t he  curve f o r  the type E meter 

i s  markedly d i f f e ren t  from t h e  curve shown i n  Fig. 4a f o r  t h e  same meter 

i n  l i q u i d  hydrogen. 

The wide dispers ion of t he  r a t i o  Cm(H20)/Cm(LH2) shown i n  Fig. 5 ,  

and the  d i spa r i ty  between H 0- and LH2-calibration curve shapes f o r  

t he  type meter (Figs .  4 and 6 )  suggest t h a t  there  may be d i s t i n c t  

2 

E 

differences i n  ve loc i ty  p r o f i l e  a t  t he  blades, f o r  the  two f lu ids ,  t h a t  

a r e  as important as t h e  temperature difference i n  es tabl ishing the  r a t i o .  

The smaller dispersion of  t he  r a t i o  Cm( GN2)/Cm( LH2), where densi ty  and 

Reynolds No. a r e  c losely simulated, and t h e  nearness of  the  r a t i o  t o  t h e  



value predicted by thermal-expansion considerations alone, lend some 

credence t o  this  suggestion. 

Blade-Tip Clearance 

4 Ear l i e r  work had suggested that  a smaller clearance between blade 

t i p s  and casing might lower the  value of v This t h e s i s  was t e s t e d  

on a type A meter. The blade-t ip  radius  on th i s  meter was subs t an t i a l ly  

equal t o  the  radius  of the entrance and exit port ions of the  meter body; 

however, t he  casing i n  the v i c i n i t y  of t h e  blades was o f  l a r g e r  radius,  

f o r  a length  of  46 mm (about 6 blade lengths) ,  producing a t i p  clearance 

o f  1.3 mm. In se r t ion  of  a cy l ind r i ca l  sleeve i n t o  this  expanded ares 

reduced t h e  t i p  clearance t o  0.13 mm. The value of C was thereby m 
increased from 87 p u l s e s / l i t e r  t o  100 p u l s e s / l i t e r ,  demonstrating t h a t  

t he re  had been considerable bypassed flow. The graph of  C/Cm - vs v 

was changed as shown i n  Fig. 7 ,  showing a reduction i n  v 

min, 2 ' 

min, 2 

R e l i a b i l i t y  

A preliminary t e s t  f o r  ident i fy ing  a defec t ive  meter i s  t o  blow 

dus t - f ree  a i r  through the  meter w i t h  j u s t  enough veloci ty  t o  induce 

spinning of  t he  ro to r ,  and then t o  observe how t h e  r o t o r  comes t o  rest  

when blowing i s  terminated abruptly; t he  r o t o r  should decelerate  

smoothly and f i n a l l y  o s c i l l a t e  w i t h  decreasing amplitude, due t o  magnetic 

coupling with the  pickup co i l ,  u n t i l  it comes t o  r e s t .  Fa i lure  t o  o s c i l l a t e  

i s  general ly  ind ica t ive  o f  a d i r t y  meter o r  defec t ive  bearing. 

t h a t  passed t h i s  t e s t  provided usable data i n  the experiments tha t  have 

been described here  e 

A l l  meters 

However, not every ca l ib ra t ion  run was usable.  Occasionally, data 

i n  a s ing le  ca l ib ra t ion  sca t te red  so badly t h a t  it was impossible 
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t o  e s t ab l i sh  a clearly-defined asymptote or t o  draw a meaningful ca l ibra t ion  

curve. 

and subsequent ca l ibra t ions  of  t he  same meter, a few days or hours aphrt ,  

were sa t i s fac tory .  I n  two other  instances,  t h e  bad ca l ibra t ions  were t h e  

first ones performed a f t e r  i n s t a l l a t i o n  of new bearings.  

This happened 5 out  of  178 times. I n  two o f  these instances,  p r i o r  

On o ther  occasions, data i n  a s ing le  ca l ib ra t ion  sca t te red  so badly 

t h a t  e exceeded O.3%, although a poor estimate of  Cm could be made. 

This happened 4 ou t  of  178 times. 

t he  bad ca l ibra t ions ,  af ter  i n s t a l l a t i o n  o f  new bearings, t h a t  was mentioned 

above; i n  t h e  other  th ree  instances,  immediately p r i o r  and subsequent 

ca l ibra t ions  were sa t i s fac tory .  

P 
One o f  these instances followed one of 

The e f f e c t  of t h e  a c t  of disassembly and reassembly t o  change bearings 

was t e s t ed  on two type F meters, where three such s e t s  of  operations 

were performed: -R t o  -F t o  -R t o  -R. There were about f i v e  ca l ibra t ions  

a f t e r  each change. The successive values of IACmImax/Cm f o r  each 

group o f  ca l ibra t ions  were 0.16, 0.21, 0.8, 1.2% f o r  one meter and 0.12, 

0.16, 0.34, 0.16% f o r  t h e  other .  

progressive de te r iora t ion  i n  bearing cleanl iness ,  f i t ,  or alignment with 

most successive assembly operations.  

ca l ibra t ions  have therefore  been omitted i n  preparing Figs. 3 and 4. 

These values suggest t h a t  there  was 

Data for the  l a s t  two groups of 

I n  general, those meters t h a t  produced one relat ively-poor  ca l ib ra t ion  

( r e l a t i v e l y  l a rge  e 

higher e o f  Cm among a l l  t h e  ca l ibra t ions .  Conversely, meters, 

l i k e  the  type Bd meter, t h a t  produced a t  l e a s t  four  consecutive 

of a s ing le  observation) a lso had a r e l a t i v e l y  
P 

P 
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ca l ibra t ions  with low e of a s i@e observation, continued t o  show 
P 

t h i s  good performance i n  succeeding ca l ibra t ions .  

CONCLUSIONS 

Table I11 indica tes  t h a t  it i s  now possible  t o  obtain meters whose 

asymptotic ca l ibra t ion  f ac to r  i s  reproducible t o  an e on the  order of  

O*l% a t  f u l l  sca le .  The worst value o f  e i s  only 0.2%. Figure 3 

provides a means of determining the  e a t  lower ve loc i t i e s  or, conversely, 

of determining the  vmin,l corresponding t o  a selected e . I n  type A 

meters, b a l l  bearings y i e ld  s l i g h t l y  lower dispers ion than journal  bearings 

a t  low flow ra t e s .  I n  type F meters, there  i s  no d i s t i n c t i v e  difference 

between full-complement b a l l  bearings and those with filled-PTFE re t a ine r s .  

Figure 4a demonstrates the  d ive r s i ty  of  mean curve shapes encountered 

P 

P 

P 

P 

with d i f f e ren t  meter designs, bu t  a l so  shows t h a t  bearing type has 

negl igible  e f f ec t  on mean curve shape. Comparing Figz. 4 and 6, it appears 

t h a t  a water ca l ib ra t ion  can not always be r e l i e d  on to provide t h e  

calibration-curve shape i n  l i qu id  hydrogen. 

Figure 4b shows the  double-amplitude o f  the  probable-error band t h a t  

must be ascribed t o  each of  the  mean curves o f  Fig. 4a. There i s  

negl igible  difference i n  band width due t o  bearing type, i n  both cases 

(types A and F) where comparisons a r e  possible .  

o f  type Bd 

t h e  f a c t  t h a t  only one meter was t e s t ed ,  

The apparent super ior i ty  

a t  v < 3 m/sec i s  t o  be a t t r i bu ted ,  a t  l e a s t  i n  pa r t ,  to 

Bearing l i f e ,  which has y e t  t o  be studied, may be the  one strong 

determinant of t he  super ior i ty  of  one type of bearing. 
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Assuming that bearing l i f e  would be adequate, and assuming a pressure 

drop i n  l i q u i d  hydrogen t h a t  would be comparable t o  tha t  which i s  common 

i n  water service,  useful  range r a t i o s  on the  order of 10:l could be achieved 

with e = 0.25% and C/Cm >_ 0.995. The non-unity value of C/Cm i s  not 

an e r ror - - jus t  an inconvenience. 
P 

Figure 5 suggests that water ca l ibra t ions  a r e  unlikely t o  y i e ld  

values of Cm with values of e as  small as those derivable from a 

liquid-hydrogen ca l ib ra t ion  (Table 111). 
P 

The l a rge r  values of e i n  Fig. 5 ,  when compared w i t h  t h e  values 
P 

derivable from Fig. 3, a l so  show that  absolute inaccuracy may be four 

times the  nonreproducibility . 
Small blade-t ip  clearance, which i s  f eas ib l e  i n  a clean f l u i d  l i k e  

l i q u i d  hydrogen, appears t o  improve meter performance, a s  i l l u s t r a t e d  i n  

Fig. 7. 

Observations on r e l i a b i l i t y  suggest t h a t  a meter t h a t  has passed 

preliminary inspection should be run i n  for a few hours a t  a var ie ty  of 

pos i t ive  and negative ve loc i t ies ,  and then ca l ibra ted  a t  l e a s t  four times, 

preferably over an i n t e r v a l  of se--c,ral days. 

s i s t e n t l y  show an e of a s ingle  observation of less than O . 3 $  of  Cm, 

t h e  meter i s  usable. Good meters w i l l  show an e on t h e  same order as 

tha t  of  the ca l ib ra t ion  f a c i l i t y ;  t h i s  was t h e  case for 90 percent of 

t h e  ca l ibra t ions  reported on here ,  Only ca l ibra t ions  i n  l i qu id  hydrogen 

can e s t ab l i sh  r e l i a b i l i t y  and probable accuracy. 

If a l l  ca l ibra t ions  con- 

P 

P 

The cleanl iness ,  f i t ,  and alignment of  bearings i s  considered most 

important. This f a c t  should dominate t h e  packaging, storage, repa i r ,  

and handling of any meter. 
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Table I. Test-Meter Character is t ics  

Model designation A Bd E F 
Size, cm 4 4 2.5 

:*5 Number of  bladesZ 6 6 3 
9.50 9.50 3.83 3.83 
6.72 7.73 3-15 3.15 

Blade-tip clearance, mm 1.30 0.50 0.43 0.32 
Speed a t  410 m/sec, rpm 8000 6000 6000 6000 

2 Area of  pipe, cm 
Area of  annulus, cm 

Table 11. Number of  Calibrations 

Number To t a l  Average 

tests 
Meter Bearing of  number 
type type meters of  t e s t s  meter 

A F 3 1 2  4 
A Ja 3 50 2-13 
Bd R 1 1 5  15 
E R 4 29 7 
F R 6 30 5 
F F 4 20 5 
a 

bAverage t e s t  durat ion 2 h 

Distributed among four mater ia ls  

Table 111. Average value of lACmlm/Cm f o r  Various Types of Meters 

Meter typea A-F A - J  Bd-R E-R F-R F-F 0.41 0 . 3 ~  0.06 0 . 2 ~  0.1 0.1~ 1 ACml mJcm, percent 3 

a Pref ix  - geometric design; su f f ix  - type of  bearing 



Table I V .  Pressure Drop a t  Various Fluid Veloci t ies  

a Meter Pressure drop Rotational Velocity , 
type iv/cm 2 p s i  speed, rpm m/sec 

27 
3.5 5.1 18 ooo 22 
1.4 2 .o 11 OOOb 14 
.4 05 6 ooo 7 

A 5.0 7.3 22 000 

Bd 5.0 7.3 15 ooo 27 
3.5 5.1 13 ooo 22 
1.4 2.0 8 000, 14 
-8 1.1 6 ooo 10 

E,F 5.0 7.3 24 OOOb 41 
3.5 5 -1 20 000 34 
1.4 2.0 1 2  500 22 

a 

bNominal fu l l - s ca l e  speed 

Mean l i n e a r  ve loc i ty  i n  unobstructed upstream pipe 

Table V. Propert ies  of  Fluids  Used f o r  Simulation 

Densi$y, Kinematic 
g/ cm viscos i ty ,  stokes 

H20 a t  3OOK, 1 bar  

L I H ~  a t  20K, 1 bar  

GNz a t  3OOK, 63 bar  

GN2 a t  3OOK, 82  bar  

1,oo 0.0117 
.071 0019 
e 071 .0028 

.io3 .001g 
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Figure 1. - Shapes of the calibration curve. Only the 
lowest and uppermost portions are shown. Separation 
of horizontal asymptotes is exaggerated for clarity. 
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Figure 2. -Arrangement of test meters. Scale applies to 2.5-cm size. The 
transverse scale is exaggerated for clarity. 
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Figure 3. - Dispersion of the calibration factor for a single meter. 
The probable error is one half the ordinate value. 
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(b) DISPERSION. 

1. ooo 

.990 

.980 

.970 

I 1 1  

1 5 10 M 
MEAN LINEAR VELOCIN IN PIPE, v, mlsec 

(a) MEAN SHAPE. 

Figure 4. -Mean calibration-curve shape for various Wpes of 
meters, and its maximum dispersion. The probable error 1s 
one half the ordinate value of figure 4b). 
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Figure 5. - Ratio of C, in water o r  high-pressure nitrogen to 
C, in l iquid hydrogen, for  various meter types. 
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Figure 6. -Water calibrations for  two meter types. 
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Figure 7. -Effect of blade-tip clearance o n  calibration- 
curve shape. 
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